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We perform a slight modification of the decoration~lecimation transformation 
which allows us to map the homogeneous Ising model on the honeycomb lattice 
on an inhomogeneous Ising model on the Kagom6 lattice. Then, we obtain 
exact results for a class of random bond Ising model on the Kagom6 lattice with 
competing interactions and show that the different types of frustration make the 
critical point of the pure model disappear. 
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1. I N T R O D U C T I O N  

The study of random systems (amorphous or glassy systems, spin glasses, (~} 
dilute alloys, (2) etc.) is one of the most important topics in condensed 
matter physics. From the theoretical side, the study of disordered systems 
by means of random bond Ising models has been the subject of intensive 
research in recent years. In the most popular version of this type of model, 
the interactions take randomly one of two possible values at each bond of 
the lattice. To study the dilution that arises when nonmagnetic atoms are 
diluted in a magnetic matrix, the two possible values are J and zero. 
Another possibility is the random bond •  Ising model (frustration 
model), which contains the essential effects of disorder and of competition 
between the interactions needed to describe spin-glass systems. Among 
these systems, spin glasses have the least understood equilibrium proper- 
ties; this lack of understanding originates from the formidable difficulties 
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encountered in the analytical approaches when quenched averages are 
performed. 

Since in this paper we will be mainly concerned with exact results 
obtained for models with competing interactions, we will briefly review 
previous work in this direction. The first step was, naturally, to look for 
exact solutions of one-dimensional models. However, a chain of spins with 
random ferromagnetic and antiferromagnetic bonds is not frustrated, 
because a single change of spin variables makes the problem trivial. Thus, 
it is necessary to include a magnetic field in order to obtain a model 
exhibiting frustration effects. This class of models was studied by several 
authors,~3 6) but the analytical results obtained so far are limited to the 
low-temperature behavior. For example, Gardner and Derrida ~5) derived a 
formula for the zero-temperature magnetization in a weak magnetic field 
and for arbitrary bond distribution, which was previously suggested by 
Chen and Ma. (6) 

The one-dimensional Ising model in a random field also has been con- 
sidered by many authors. ~7-11~ The particular case of a binary random field 
( + h )  is equivalent to the (_+ J) random bond Ising chain in a uniform field. 
Rather than reviewing the increasingly important work on this model, we 
merely cite a recent paper ~12) in which an Ising chain in a varying magnetic 
field is solved. In this paper, the free energy and its derivatives with respect 
to temperature are exactly computed at a particular fixed value of the tem- 
perature. This limitation also arises in our procedure and is a characteristic 
of a large class of analytical approaches, such as the disorder 
solutions.(13,14) 

If there are few exact results for one-dimensional disordered models, 
the situation is even worse in two dimensions. In fact, there are no exact 
results with full two-dimensional randomness for short-range interactions. 
The models exactly solved have "striped randomness," such as the dilute 
model proposed by McCoy 1~5) and the frustrated model analyzed by Wolff 
and Zittartz. (16) In this type of layered model, only the bonds in one direc- 
tion are random variables. 

In many dimensions, one could consider the work of Nishimori, (~4) 
who obtained disorder solutions for the short-range frustrated Ising model. 
Although he gave useful information about the phase diagram of this 
model, he was unable to extract some singularity and thus to study the 
profound effects of frustration. 

On the other hand, much analytical work has been devoted to infinite- 
range interaction models, in particular, that of Sherrington and 
Kirkpatrick/~7'~8) However, the infinite-range models may be considered as 
infinite-dimensional ones, which cannot reflect the dependence of various 
properties of spin glasses on dimension. 
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In this paper, we present exact results for a disordered Ising model on 
a Kagom6 lattice (KIM) at a fixed temperature. In fact, we are able to 
construct a class of inhomogeneous Ising models on a Kagom6 lattice for 
which the free energy can be exactly computed. This construction involves 
the use of the decoration-decimation procedure (~9) modified in such a way 
that a bond K of the original lattice is replaced by a series array of two 
parameters L and M, which can be chosen differently at each bond of this 
lattice. After decimation, the coupling constants may be different at each 
bond of the new lattice. Then, one can perform a mapping of the 
homogeneous Ising model on the honeycomb lattice (HIM) to an 
inhomogeneous KIM. This procedure is explained in detail in Section 2. 

In Section 3 we solve as a particular case a disordered model obtained 
by taking the intermediate variables L and M as random variables with a 
two-delta probability distribution. We consider some possible sets of values 
that can take the random variables, and work out the free energy. In spite 
of the simplicity of the distribution adopted, we can obtain a model with 
competing interactions and with different types of frustration. We show 
that in all cases the effect of frustration consists in eliminating the critical 
point of the pure KIM. 

In Section 4 we briefly present, as another application of our transfor- 
mation, the exact results obtained for a nonrandom, quasiperiodic model. 

Finally, in Section 5, we summarize our results, discuss our main con- 
clusions, and indicate new possible applications and further developments 
of the transformation considered in this paper. 

2. N O N U N I F O R M  D E C O R A T I O N  T R A N S F O R M A T I O N  

Let us consider the anisotropic Ising model on a honeycomb lattice 
(HIM) with a Hamiltonian given by 

H = - ~  {s6(K~l)t o + K~2)t6+ 1 + K~3)ti lj) } (2.1) 
(6) 

where {so } and {tij} belong to two different sublattices, indicated by solid 
and open circles, respectively, in Fig. 1, and where the sum extends over the 
sites of one of these sublattices, for example, the one of circles. Notice that 
each of these sublattices is in fact a square lattice. This, perhaps unusual, 
labeling was found to be very convenient for performing the following 
transformation. The interactions K ~) (~ = 1, 2, 3) include the factor 1/k B T, 
where kB is the Boltzmann constant and T the temperature. 

The partition function for this model is defined by 

Zh( {K ~) } ) = ~. exp( -- H) (2.2) 
s , t  
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Fig. 1. The two sublattices (O)  {s0 } and (�9 that build up the honeycomb lattice. 

where the sum extends over all the spin configurations of the sites sij 
and t o . 

Now we perform the decoration of the honeycomb lattice, which 
consists in introducing an extra spin variable ff(~) on the middle point of 
every bond of the original lattice, In the usual procedure (19) one replaces 
each bond K (~ by two equal bonds L ~) as shown in Fig. 2. 

Then, in terms of the new variables L (~), the partition function (2.2) 
may be rewritten as 

Zh= (AO)A(2)A(3)) Nh/2 Z Z e x p  { Z  [L(1)G~I~(so + to) 
a(l),a(2),a(3) s,t (ij) 

t(2)~(2)r -v t )-I- L(3)ff(ij3)(sij+ t i _u) ] }  ~ -  ~ v i j  ,, o i j  - -  ~ i j  + l (2.3) 
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Fig. 2. The uniform decoration transformation. 

where 

tanhZ(L (~)) = tanh(K (~)) (2.4a) 

A(~)= �89 ,n, e = 1, 2, 3 (2.4b) 

and Nh is the number of sites of the honeycomb lattice. 
Now we propose a generalization of this procedure by replacing each 

bond K (~) by two different bonds L (~) and M (~). This allows us to perform a 
nonuniform decoration by taking different L (~) (and correspondingly M (~)) 
for each bond of the lattice. For convenience we denote by L!~ ')~j (Mb ~)) the 
interactions with one end at site s~ (t~j), as shown in Fig. 3. 

We can verify that we still have only one constraint per bond, since 
(2.4a) is now replaced by 

tanh(L~ 1)) tanh(m~))  = tanh(K (l)) 

tanh(Lb 2)) tanh(m~2+ ) ,) = tanh(K (2)) (2.5) 

tanh(L~ 3)) tanh(Ml 3j l j) = tanh(K(3)) 

Therefore, we have, instead of (2.2), 

Z h = [ I  LVA(~)A!?)A!3)]y ,j v E E e x p { Z  ~rs..tL!l'a!l)y, ~ ,~ 
(t~) o'(1)0-(2)o- (3) s t  ( i j )  

L!?)a(?) -4- L(?)a! 3)] + M(! ) t . a (~ )  + M (2) to + a! 2) 
q Ij - -  tj t j  J U tj  tJ U + I  l l j  

(3) t. . a ( } ) ] ;  + M i - l j  , lj u - ' j  (2.6) 

where 

A~ 1)= �89 + M~ ')) cosh(Ll ) ) -  M~n)] ,/'2 

A(?) �89 + M(2) ~,~(2) )] = ) c o s n t ~  ~ _ , - ( 2 ) ,  ,/2 y tj + 1 i V I  i j +  �9 

A,~ 3) = �89176 ) + MI 3) ,j) c~ 3) - M~ 3-) lj)] -1/2 

(2.7) 

S~ W 
K I~) L!~') l] 

i% 

O-(~) O 

M~) u 
O Iv 

Fig. 3. The modified, nonuniform, decoration transformation. 
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As usual, after the decoration step, the old spins {su} and {tu} become 
decoupled and can be explicitly summed out. This decimation transforms 
the honeycomb lattice into the Kagom6 lattice (see Fig. 4). 

Then, one can write 

Zh({K~)}) =l-I rAg)A!~)A!?)BCI ZK~g({P, 1~}) L zJ tJ l./ tj t jJ  
( i j )  

(2.8a) 

where 

ZK~g({-P,/7,}) = ~ exp { ~  [ Pg)~rg)Mz)U ,J ,J 
o-(l}o-(2)o-( 3 ) (/j') 

0-(1)O"! 3) -4- P ( 3 ) r r ( 2 ) ~ ( 3 )  --~ R ( 1 ) r r ( 1 )  rr(3) +P,~) q ,s - - i j  ~ o - i j  ~ 0 - l ~ i + l j  

R(2)o - (2 )o - (3 )  .4_ R ( 3 ) M ? ) M ~ )  1 ] ~  (2.8b) ij ij i +  l j  ~ tj q q 
3 

Using the well known star-triangle relations (Fig. 4b), we have that 

sinh(2L,~2)) ~3) sinh(2Lu ) (2.9a) 
tanh(ZPl~) = cosh(2Ll~) ) + cosh(2L~?)) ~3) cosh(2Lu ) 

sinh(2M~ 2)) sinh(2M~3)) (2.9b) 
tanh(ZRl~) ) = cosh(ZM~l)) + cosh(2M~ 2)) cosh(ZM~ 3)) 

and the remaining coupling constants are calculated by similar expressions 
obtained by cyclic permutations of the indices (1, 2, 3). The star-triangle 
relations also establish that 

Bu= 4 sinh2(2L~) + 2 cosh(2L,~)) + 2 (2.10a) 
1 ~ = 1  

Finally, by defining the free energies per spin in the usual way as 

1 1 
fh -- - ~-~h In Zh, fKag- NKa~ In ZKag 

where NKag = 3Nh/2, and taking into account (2.8a), we obtain 

1 2 
fKag - NKag Z [ln A(2) + In A,~ 2) + In A~? ) + in B~j + In Co ] + ~fh (2.11) 
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V v 
(a) 

\ . .  L~P L (3) / 

!L•2) ~(1),] 

/ 

R ~ P ]  ] M!?  ) 

/ / ' M ~ ?  1 M}, I "-- 

(b) 
Fig. 4. (a) ( - - )  The Kagom6 lattice resulting after the decimation of the sites (Q, (3) of (- -) 
the honeycomb lattice. (b) An elementary cell of the Kagom6 lattice composed of a 
"P-triangle" (upper triangle) and an "R-triangle" (lower). The sites of the honeycomb lattice 
and the intermediate interactions L(~ ) and M!~ ) arising after the decimation step are also tj 
shown. 
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with (19) 

fh = 16zcz Jo In [1 + 

- S(1)S (3) cos(co I --(02) - S(i)S (2) cos co 1 

- -  S ( 2 ) S  ( 3 )  c o s  (/)2"] } dc~ 1 dco2 (2.12) 

where C (~) = cosh(2K (~)) and S (~) - sinh(2K(~)). 
In this way, we have expressed the free energy of the nonuniform KIM 

in terms of the free energy of the uniform HIM. 
The relations (2.5) and (2.9) can be used to choose the parameters L!~) ,j 

as the independent variables that govern the inhomogeneity of the KIM. It 
is easy to verify that the number of independent parameters L!~ ) is equal to u 

the number of sites of the Kagom6 lattice (NKag) and equal to the half of 
the interactions P(~) and R!~ ) 

/J tJ ' 

If the system is a disordered one, that is, in our case, a random bond 
Ising model, the expression (2.11) is valid for a particular realization of 
{L,~)}. The quenched free energy, after taking the average over the 
disorder, is given by the following expression: 

fKag = H f f f  dL(i) ) dL~ 2) (3) (1, dL o p(L o p(Lb?))p(L~3))fKag (2.13) 
U 

where p(L~ ~)) is the probability distribution of L(~ ) /a' ' 

As was stated above, using (2.5) and (2.9b) (and its cyclic per- 
mutations), one can express the variables R(~) in terms of the parameters t j  

L!~ / Then, taking into account the relation (2.9a) and its cyclic tj " 

permutations, one can see that the interactions R(~ ) are related to the tj 

P!3) through temperature-dependent equations. This implies that the q 

temperature is fixed. This important limitation of our transformation also 
arises in other procedures employed to obtain exact results in nonuniform 
models (see, for example, Refs. 12, 20, and 21). 

Finally, remark that the parameters -ijr~(~), --0~t(~), and K (~) are not 
restricted to real values. Only the variables P!~) and R(~) which are the t j  ~ / j  

interactions of the KIM, must be real. In the next section, we will take 
advantage of this freedom by choosing L(~) or K (~) in such a way as to t) 

introduce frustration in the nonuniform KIM. 

3. R A N D O M  BOND ISING M O D E L  ON THE K A G O M E  LATTICE 

In this section we apply the formalism described above to a class of 
random bond Ising models obtained by assuming that the L!~ ) are indepen- 

9 
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dent random variables with a two-delta function probability distribution 
(O~<p~< 1): 

p(L~))=p6(L~?3- L~) + (1 - p) 6(L~)-  L2) (3.1) 

where LI and L 2 can take, in general, complex values. Perhaps it would 
make more physical sense to give from the beginning the probability dis- 
tributions of the interactions P!~) considered as the independent variables, 

/J 

i.e., inverting (2.9a), but the calculations would become somewhat more 
complicated. 

From (2.9a) and (2.9b), and taking for simplicity the isotropic case 
K (~)= K, it can be seen that each of the variables P(~ and R(~ ) can take six 

t j  tJ 

possible values P1,.--, P6 and RI,..., R6. These values, together with their 
respective probabilities, are shown in Appendix A. One must keep in mind 
that the effective probability of having a given value of the interactions, or 
an interaction of a given sign, is not p, but a function, which can be a 
constant, of p. 

The quenched free energy of this model can be computed exactly from 
(2.13) after replacing the probability distributions given by (3.1) and taking 
into account (2.7), (2.10), and (2.11). This calculation is greatly simplified, 
since we have an equal contribution from all the sites (/j) of the underlying 
square lattice [number of sites (/ j)= NKag/3]. Moreover, the integrals, due 
to the delta functions involved in the probability distributions, reduce to a 
sum over the possible values of In/l!~) in Bis, In C~, each term of this sum - - / j  , 

been weighted by the probabilities am(p) , bm(p) , and Cm(p) , respectively. 
Thus, one can write 

1 

fKag = --3 ~ [3am(p) In Am + bin(p) In Bm 
m 

2 
+ era(p)In Cm] + 5fh(K) (3.2) 

where Am, Bm, and Cm are functions of LI, L2, and K. The final expression 
for the free energy for general values of L1, L2, and K is given in Appen- 
dix B. 

Now we study the behavior of our model in the space of complex 
parameters (LI, L2, K). 

Consider first the case L~ = - L 2 ,  which is the simplest nontrivial case 
that leads to competing interactions. From the expression given in Appen- 
dix A, we see that Ps and Rj (j  = 1,..., 6) can take the following values: 

+ l l n  1 + 3  tanh 2 L1 e1 (3.3a) 
- 4 1 - tanh 2 L1 

1 In tanh2 L1 + 3 tanh 2 K 
Rj _+ (3.3b) 

tanh 2 L~ - tanh 2 K 
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For this particular case, the final model reduces to an ordered 
(nonrandom) one. That is, the free energy, after taking tl = - t 2  
( t , = t a n h L ,  and tK=tanh  K in (B.1) and using (2.11) with K(~)=K 
becomes 

1[ 3 
fKag-  3 - 2 1 n t l - -  l n ( 1 - - t 2 ) + ~ l n ( 1 - t  2) 

where 

3 2 2 1 l ln(t ~+ 3 t ~ ) _ l n 2 1 + ~ f  h + ~ ln(t 1 - t~) + ~ ln(1 + 3t~) + (3.4) 

f h -  24rc2j ~ 3o dwldwzln  { l+cosh3(2K)  

- sinhZ(2K)[cos(031 - 032) + cos 031 + cos 032] }) (3.5) 

i.e., independent of p. One can verify that (3.4) is also valid for the case 
L 1 = L 2. This result may be understood from the fact that by performing a 
change of sign of some of the spin variables, one can always change the 
signs of the interactions in such a way as to obtain an ordered model. We 
emphasize that even this ordered model, which for certain values of the 
parameters can be frustrated, is not contained in the exact solution of the 
anisotropic KIM. This result allows us to separate the effect of randomness 
from other effects, which originate from dilution or frustration. 

We now discuss our model in the following subspaces of parameters: 
(I) L 1, L2, and K are real values; (II) LI and L 2 a r e  real and K =  ik, 
i = x / ~ i  -, k real; (III) Lu = il~, l~ real (# = 1, 2), and K real. 

Subspace I. For this case, the relations (2.5) lead to the restriction 

ILul > IKI, ~ = 1, 2 (3.6) 

which implies that L~ cannot vanish ( K = 0  is obviously trivial). Then, 
from the expressions for Pj and Rj in Appendix A, it can be seen that these 
parameters are also different from zero. Thus, the dilute model cannot be 
studied within this subspace. 

The other interesting nonuniform model is that of competing interac- 
tions. From (A.1) we see that in order to obtain interactions with opposite 
signs in this subspace, one must take sign L1 -r sign L2. Then, the interac- 
tions Pj and Rj ( j = l  ..... 6) take the signs ( + ,  +,  , , + ,  + )  and 
( + ,  + ,  , , + ,  + ), respectively (in the following we will refer to this 
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type of sign set as a "sign rule"). From this sign rule one obtains that the 
effective probability/5 for the interactions to be positive is given by 

/5 = 1 - 2p + 2p 2 (3.7) 

and, since 0 ~< p ~< 1, this probability is restricted to 1/2 ~</~ ~< 1. It is impor- 
tant to notice that, in spite of the presence of competing interactions, the 
resulting Kagom6 lattice is unfrustrated, i.e., it has no frustrated closed 
paths (as usual, we call a given path on the lattice "frustrated" if the 
product of the signs of the interactions along that path is equal to -1 ) .  
The ultimate reason for the absence of frustration is given by the relations 
(2.5) and (2.9), which are implicit in the sign rule. 

The analysis of the case L1 = - L 2  is almost trivial, as expected from 
the comment made inmediately below (3.4). In effect, in this particular 
case, it is easy to see that a single change of signs of some of the spin 
variables is sufficient to make all the interactions positive. 

As can be seen from (B.1), due to the analyticity of the transformation, 
there are no singularities in the terms between brackets, except for the 
trivial one at K =  +oe. Then, the absence of frustration manifests itself in 
that the critical behavior of the random bond KIM is the same of that of 
the pure HIM that arises as a singularity of the integral (3.5) when 
cosh(2Kc) = 2. 

Subspoco  II. After replacing K =  ik in the condition (2.5) it can be 
seen that M{~ )~ must be imaginary numbers, i.e., M!. ~),j = tmij" (~), with m!~)~ real. 
Then, this condition may be rewritten as 

tanh L~ tg m~ = tg k, /~ = 1, 2 (3.8) 

In order to obtain physical interactions, we can see from the expressions 
given Appendix A that the condition 

1 1 
[tg kl < ~  rain{ rtanh Lll, Itanh L2t} ~ < ~  (3.9) 

must be satisfied. 
At first sight, condition (3.8) seems to allow us to study a dilute 

random model by taking tl ~ 0 and simultaneously tg (ml-~ oe so as to 
keep k constant and t2 nonzero. However, from (3.9) we conclude that 
k ~ 0, thus reducing the model to a trivial one. 

We now turn to the study of frustration. Note that for both cases sign 
L1 = sign L 2 and sign L~ r sign L 2 we obtain competing interactions Pj and 
Rj with the sign rules (+,..., + ) and ( - ,  .... - )  for the former case and 
(+ ,  +,  , , +,  + ) a n d ( - , - , + , + ,  , ) for the latter. Fromthese  
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sign rules it follows immediately that for both cases the effective probability 
for having a positive interaction is/~ = 1/2, independent of p. 

For both situations, both the R-triangles and the hexagons can hold 
frustration, while the P-triangles cannot (see Fig. 5). This type of 
frustration eliminates the critical point of the pure KIM. This very impor- 
tant effect can be seen from (3.2), since the sum gives an analytical 
contribution, while fh given by (3.5) can be rewritten as 

fh = 24rc 2 Jo Jo dwl dw2 In { 1 + cos3(2k) 

+ sin2(2k)[cos(col - c%) + cos w 1 + cos co2] }) (3.10) 
\ 

A careful analysis of (3.10) shows that there are only two singular points. 
These points, located at k = ~/4 and ~/2, correspond to tg k--  1 and + oo 
and therefore they are excluded due to the condition (3.9). 

Subspace III. Again (2.5) implies that M!~ ) must be imaginary num- /j 
bers. In terms of real values this condition takes the form 

tg l~ tg rn~ = - t a n h  K, /~ = 1, 2 (3.11 ) 

+ ~ - -  - 

V 
Fig. 5. In subspace II of parameters,  a possible set of signs of the random interactions L!~ ') v 
and M ~  ) (dashed lines) that leads to frustrated hexagons and R-triangles and nonfrustrated 
P-triangles, according to the sign rules of this subspace. 
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Another set of conditions arises by imposing that the interactions Pj and Rj 
given in Appendix A take physical, i.e., real, values. Taking into account 
the symmetry of those expressions with respect to li and 12, one can show 
that the necessary and sufficient conditions to be satisfied by ll, 12, and K 
are 

1 
Itg/~1 < 7 ,  /~= 1,2 (3.12a) 

1 
7 rain{ ]tg ll l, ]tg 121 } (3.12b) r tanh Kt < 

Of course, (3.12a) and (3.12b) imply that 

1 
Itanh KI < ~  (3.13) 

J 

It is easy to verify that, as in the preceding subspaces, the study of the 
dilute model could only be done at the trivial point K =  0. 

In order to determine the presence of frustration we observe from 
expressions (A.t) that if sign 11= sign 12 all the interactions Pj and R~ 
become negative, and if sign l, r sign l 2 one has for both types of inter- 
actions the sign rule ( - , - ,  +,  +,  - ,  - , ) .  Then, for both cases all the 
triangles are always frustrated, while the hexagons are unfrustrated. The 
difference between these two situations is that the first one (sign ll = sign/2) 
is in fact a disordered antiferromagnetic model with an effective probability 
/~=0, and the second (sign llCsign/2) is a model with true competing 
interactions with 

/~ = 2p(1 - p )  (3.14) 

which implies 0 ~< ff ~< 1/2. 
As in the preceding subspace, the frustration eliminates the critical 

point of the pure model, since the singularity of the integral (3.5) located at 
cosh(2Kc)= 2 leads to tanh(Kc)= 1Ix/3, which is excluded by (3.13). 

4. APPLICATION TO A QUASIPERIODIC MODEL 

In this section we apply the procedure developed in Section 2 to a 
deterministic inhomogeneous model that is possibly interesting for the 
study of incommensurate systems. A model of this type is obtained by 
imposing a quasiperiodic variation on the independent parameters L ~ )  for 

0" ' 

example, 
L!~ ~ = 2 t~) + 6 ~) cos(2niw) cos(2njw) (4. l ) /j  



504 Giacomini and Riera 

where w is an irrational number. If we consider subspace I of parameters 
defined in the preceding section, that is, L(~ ) and K real numbers, the 

Y 

restriction [L,~ =)1 > [gl implies that 

1,~(=)1- 16(~)l > IN] (4.2)  

After replacing (4.1) in (2.5), (2.7), (2.9), and (2.10), it follows that the 
A! ~) B~j, and C~j on the other also variables P!~),j and R!~ )~ on one hand and --0 , 

constitute quasiperiodic sequences. In fact, we can write 

A!~ ~ =- A~(u~, uj) zj 

B~j--- B(u~, uj) (4.3) 

C~-- C(u, UJ) 

where u~= iw and uj=jw are two equidistributed sequences (mod 1). In 
this section, the variable i should not be confused with x / - 1 .  

In order make the notation more compact, let us call 

Cb(u,, uj) = ln[ A~I' AbZ' Ab3) B~/Cij] (4.4) 

Then we can rewrite (2.11) in the thermodynamic limit NKag ~ o0 as 

fKag lim N~g~q~(ui, uj) 2 
"~" N K a g  ~ oO " +  ~ fh 

-- lim 1 L~ Ly 2 
L,:,Lr~ooLxL v ~ ~ ~(Ui, Uj)-t-~f h (4.5) 

�9 . . i = 1  j = l  

where obviously NKag=LxLy. Now applying a straightforward 
generalization of a lemma due to Weyl, (12) we obtain the exact free energy 
of the quasiperiodic model: 

1 1 2 
fKag= ~o dX fo dY qS(x, Y) +~ fh (4.6) 

Of course, the integrand of the last equation is a very complicated function 
of the variables x and y, but it may be computed numerically with the 
desired accuracy. 

We think that it would be more interesting to analyse the 
quasiperiodic models obtained by considering subspaces II and III, that is, 
taking L!~ ) or K (~) as imaginary numbers. These models would have q 

different types of nonuniform frustration and, in consequence, deserve a 
more detailed study. 
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5. CONCLUSIONS 

We generalized the decoration transformation by replacing a bond 
K (~) of the original lattice by two interactions L!~ )v and M~ ~), which may be 
taken differently at each bond of the lattice. This provides a new degree of 
freedom, which can be used to transform a uniform model into a non- 
uniform one. The price we have to pay for this is that the resulting model is 
at a fixed temperature. 

We applied this transformation to a uniform Ising model on a 
honeycomb lattice to obtain a nonuniform Ising model on a Kagom6 
lattice. In particular we considered a disordered KIM with competing 
interactions. We were also able to study separately the effects of disorder 
from other features of the ordered model, such as frustration. 

In fact, we have seen that the effects of disorder are almost irrelevant, 
since they do not modify qualitatively, i.e., with respect to criticality, the 
behavior of the quenched free energy. Of course, since disorder is marginal 
in the 2d Ising model (Harris criterion(22~), other disordered 2d Ising 
models (for example, the "striped randomness" model studied by 
McCoy (15)) do have critical behaviors different from that of the pure case. 

On the other hand, for all the models (ordered or not) where the 
competing interactions lead to frustration, the critical point of the pure 
(ferromagnetic) KIM disappears. This is in accord with the now widely 
accepted view that the spin glass does not exists as a genuine equilibrium 
phase transition in two dimensions. 

In particular, for the subspace III, where the triangles, but not the 
hexagons, are frustrated, the free energy is essentially the same of that of 
the pure model, but it cannot become singular due to restrictions on the 
parameter K. In subspace II, hexagons can also become frustrated and this 
leads to a profound change in the free energy, which does not merely 
consist in a limitation on the values of the parameter K. For this subspace 
the effective probability p is fixed at 1/2, which certainly indicates the 
strongest competition and is the most commonly studied from the 
numerical point of view. 

For the particular case LI = - L 2 ,  the possible values of the inter- 
actions reduce to two, P and R, which are functions of the parameters L 
and K. For this case, the temperature is no longer fixed and one can com- 
pute thermodynamic properties, such as the specific heat. 

The decoration transformation can be generalized to include magnetic 
fields. (19~ This generalization is used to relate the magnetization between 
two models, for example, the honeycomb and the Kagom6 lattice Ising 
models. In principle, it is possible to reformulate this extended transfor- 
mation in a similar fashion to that performed in this paper for the transfor- 

822/49/3-4-7 
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Table  I 

{ L ~  ) } Label  of  Pj  and  R s Probabi l i ty  

L 1 L 1 L  1 1 p3 

L 1 L 1 L  2 2 p2(1 - p )  
L1L2L1 or L z L 1 L  1 3 2p2(1 - p)  
L z L  1L 2 or L1LzL2 4 2p(1 - p)2 

L z L z L  1 5 p( 1 - p )2 
L z L 2 L  2 6 (1 - p)3 

marion without magnetic fields. At first sight, the condition of uniform field 
in the original (honeycomb) model would lead to further correlations 
between the parameters L!~ ) and lvt(~) but surely sufficient freedom would ~j ~,l/j  , 

remain to introduce nonuniformity and so also disorder. Then one could 
compute the magnetization of our disordered KIM at a fixed temperature. 

It also would be worthwhile to obtain information about the suscep- 
tibilities of the nonuniform models considered in this paper, by using the 
already known behavior of the pure honeycomb lattice Ising model, which 
results from series expansions and other approximate methods. These 
quantities would allow us a better comprehension of the phases of these 
nonuniform models. 

A P P E N D I X  A 

In this Appendix we show the possible values Pj and R s ( j =  1,..., 6) 
that can take the P!~),j and R,~), respectively, in terms of Lx, L2, and K. 
These values are obtained from (2.5) and (2.9) after replacing L!~ ) by L1 or q 
L 2 (see Table I). Taking into account the double-delta probability 
distribution (3.1), we calculate the probability of each value Ps and Rs: 

PL = 1 In 1 + 3t~ 
14 

1 (l+t~)2--4tlt2 
P 2 = 4  In (1 - t~ )  2 

1 1 + t 2 + 2tl t2 
P 3 = 4  In l + t Z - 2 t l t 2  

1 l+tZ+2t l t2  
P 4 = ~ l n  1 + tz-2t~t2 

1 ( l+t~)2-4 t l t2  
P s = ~  In (1_  t~)2 

p 6 = l l n  1 +3t~ 

(A.la) 
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1 
R 1 = ~  In - -  

1 
R2 = ~ In 

1 
R 3 = ~ in 

R 4 = ~ In 

R5 = ~  In 

R 6 = ~ In - -  

where t~ = tanh L~, /~ =. 1, 2, and 

t2 + 3t~ 
t 2 _  t 2 

2 2 2 2 2 4 t2(tx+tK) --4t  it K 
iZ , -5- - - - - -  t2(t 1 -- t~) 2 

(t~+ t~) t2+2tlt2~ 

(t~ + t~) t~ - 2t, t~ 

(t~ + t~) t~ + 2t2t~ 
( t2+ t 2) t ~ - 2 t z  t2 

2 2 2 2 2 4 t1(t 2 + tK) -- 4t 1 t~ 
2 2 tl(t 2 t~;) 2 

t~ + 3 4  
-S - - ~5- t 2 - -  t K 

t~ = tanh K. 
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(A.lb) 

A P P E N D I X  B 

In this Appendix, we explicitly show the expression for the quenched 
free energy (3.2) corresponding to the double-delta probability distribution 
(3.1): 

1{2 / 2 3 p2~ fKag = ~ ( - 5 + p )  ln t, + ~ -  + ~ p + - ~ ) l n t 2  

1 - - p  
_ 32 ln(1 -- t~) + 2  ln(1 -- t 2) + ~ In (1 -- t 2) 

+ P ln( t2 -- t z  ) + ~ - S ~  ln( t~ -- t~ ) + P---41n( l + tZ + 2t K) 

(1 _ p ) 2  p 2  

- -  ln(1 + t2 + 2tK) +--~-ln(1 + t ~ - 2 t ~ )  

(1 _ p ) 2  
- -  ln(1 + t2--2tK)-t P ( 1 4 P ) l n [ t 2 ( 1  +t~)- -2 t l t~:  ] 

p(1 - p )  
4 

- -  In [t2(1 + t z ) + 2 t l t K ]  

-~ p( l~-  p) ln[t ,(1 + t22) - 2t2 tK] 



508 Giacomini and Riera 

+ - -  
p(1 - p )  

ln[ t l (1  + t~) + 2t2tK] 

p2 
+ -~- ln(t~ + t~ + 2t~ tx) 

(1-P)21n (t 2+ t~+ 2tztK) 
4 

p2 
+ -~- In (t21 + t 2 - 2tzt~) 

(1 )2 
- P ln (t2 + t ~ _  2t~tx) 
4 

p(1 - p) in (t~ + t2 + 2t~ t2t~:) 
4 

p ( 1 - P )  ln ( t~+ t z + 2 t l t z t ~ )  
4 

+ ~p_______~,p(1 - ln(t~ + t ~ -  2t~ tzt~:) 
4 

p ( 1  - -  2 
+ P~--------~J ln(t~ + t~: - 2t, t2 tK) - In 2 + 3 fh (B. 1 ) 

4 
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